首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   22篇
  国内免费   4篇
化学   578篇
晶体学   2篇
力学   11篇
数学   106篇
物理学   180篇
  2021年   8篇
  2020年   7篇
  2019年   6篇
  2016年   5篇
  2015年   13篇
  2014年   14篇
  2013年   29篇
  2012年   37篇
  2011年   40篇
  2010年   30篇
  2009年   15篇
  2008年   44篇
  2007年   45篇
  2006年   47篇
  2005年   40篇
  2004年   40篇
  2003年   30篇
  2002年   28篇
  2001年   17篇
  2000年   9篇
  1999年   14篇
  1998年   8篇
  1997年   9篇
  1996年   10篇
  1995年   11篇
  1994年   11篇
  1993年   18篇
  1992年   24篇
  1991年   10篇
  1990年   13篇
  1989年   12篇
  1988年   7篇
  1987年   19篇
  1986年   13篇
  1985年   5篇
  1984年   14篇
  1983年   9篇
  1982年   9篇
  1981年   9篇
  1977年   5篇
  1976年   6篇
  1974年   6篇
  1971年   6篇
  1970年   5篇
  1959年   5篇
  1955年   5篇
  1931年   4篇
  1930年   4篇
  1928年   6篇
  1923年   9篇
排序方式: 共有877条查询结果,搜索用时 234 毫秒
31.
The accuracy of biological simulations depends, in large part, on the treatment of electrostatics. Due to the availability of accurate experimental values, calculation of pKa provides stringent evaluation of computational methods. The generalized solvent boundary potential (GSBP) and Ewald summation electrostatic treatments were recently implemented for combined quantum mechanical and molecular mechanics (QM/MM) simulations by our group. These approaches were tested by calculating pKa shifts due to differences in electronic structure and electrostatic environment; the shifts were determined for a series of small molecules in solution, using various electrostatic treatments, and two residues (His 31, Lys 102) in the M102K T4-lysozyme mutant with large pKa shifts, using the GSBP approach. The calculations utilized a free energy perturbation scheme with the QM/MM potential function involving the self-consistent charge density functional tight binding (SCC-DFTB) and CHARMM as the QM and MM methods, respectively. The study of small molecules demonstrated that inconsistent electrostatic models produced results that were difficult to correct in a robust manner; by contrast, extended electrostatics, GSBP, and Ewald simulations produced consistent results once a bulk solvation contribution was carefully chosen. In addition to the electrostatic treatment, the pKa shifts were also sensitive to the level of the QM method and the scheme of treating QM/MM Coulombic interactions; however, simple perturbative corrections based on SCC-DFTB/CHARMM trajectories and higher level single point energy calculations were found to give satisfactory results. Combining all factors gave a root-mean-square difference of 0.7 pKa units for the relative pKa values of the small molecules compared to experiment. For the residues in the lysozyme, an accurate pKa shift was obtained for His 31 with multiple nanosecond simulations. For Lys 102, however, the pKa shift was estimated to be too large, even after more than 10 nanosecond simulations for each lambda window; the difficulty was due to the significant, but slow, reorganization of the protein and water structure when Lys 102 was protonated. The simulations support that Lys 102 is deprotonated in the X-ray structure and the protein is highly destabilized when this residue is protonated.  相似文献   
32.
In recent years capillary chromatography has gained popularity for trace analyses. Most often UV or electrochemical detection is employed because the small peak volumes make post-column derivatization challenging. We have developed a simple method based on flow injection for determining contributions to peak broadening from post-column reactors. The only requirement for application of our methodology is that diffusion be in the Taylor regime so that radial concentration gradients are relaxed enabling mixing purely by diffusion.  相似文献   
33.
Small hydrocarbon complexes (X@cage) incorporating cage-centered endohedral atoms and ions (X = H(+), H, He, Ne, Ar, Li(0,+), Be(0,+,2+), Na(0,+), Mg(0,+,2+)) have been studied at the B3LYP/6-31G(d) hybrid HF/DFT level of theory. No tetrahedrane (C(4)H(4), T(d)()) endohedral complexes are minima, not even with the very small hydrogen atom or beryllium dication. Cubane (C(8)H(8), O(h)()) and bicyclo[2.2.2]octane (C(8)H(14), D(3)(h)()) minima are limited to encapsulating species smaller than Ne and Na(+). Despite its intermediate size, adamantane (C(10)H(16), T(d)()) can enclose a wide variety of endohedral atoms and ions including H, He, Ne, Li(0,+), Be(0,+,2+), Na(0,+), and Mg(2+). In contrast, the truncated tetrahedrane (C(12)H(12), T(d)()) encapsulates fewer species, while the D(4)(d)() symmetric C(16)H(16) hydrocarbon cage (see Table of Contents graphic) encapsulates all but the larger Be, Mg, and Mg(+) species. The host cages have more compact geometries when metal atoms, rather than cations, are inside. This is due to electron donation from the endohedral metals into C-C bonding and C-H antibonding cage molecular orbitals. The relative stabilities of endohedral minima are evaluated by comparing their energies (E(endo)) to the sum of their isolated components (E(inc) = E(endo) - E(cage) - E(x)) and to their exohedral isomer energies (E(isom) = E(endo) - E(exo)). Although exohedral binding is preferred to endohedral encapsulation without exception (i.e., E(isom) is always exothermic), Be(2+)@C(10)H(16) (T(d)(); -235.5 kcal/mol), Li(+)@C(12)H(12) (T(d)(); 50.2 kcal/mol), Be(2+)@C(12)H(12) (T(d)(); -181.2 kcal/mol), Mg(2+)@C(12)H(12) (T(d)(); -45.0 kcal/mol), Li(+)@C(16)H(16) (D(4)(d)(); 13.3 kcal/mol), Be(+)@C(16)H(16) (C(4)(v)(); 31.8 kcal/mol), Be(2+)@C(16)H(16) (D(4)(d)(); -239.2 kcal/mol), and Mg(2+)@C(16)H(16) (D(4)(d)(); -37.7 kcal/mol) are relatively stable as compared to experimentally known He@C(20)H(20) (I(h)()), which has an E(inc) = 37.9 kcal/mol and E(isom) = -35.4 kcal/mol. Overall, endohedral cage complexes with low parent cage strain energies, large cage internal cavity volumes, and a small, highly charged guest species are the most viable synthetic targets.  相似文献   
34.
Density-functional theory has been used to determine the ground-state geometries and electronic states for homonuclear transition-metal trimers constrained to equilateral triangle geometries. This represents the first application of consistent theoretical methods to all of the ten 3d block transition-metal trimers, from scandium to zinc. A search of the potential surfaces yields the following electronic ground states and bond lengths: Sc3(2A1',2.83 A), Ti3(7E',2.32 A), V3(2E",2.06 A), Cr3(17E',2.92 A), Mn3(16A2',2.73 A), Fe3(11E",2.24 A), Co3(6E",2.18 A), Ni3(3A2",2.23 A), Cu3(2E',2.37 A), and Zn3(1A1',2.93 A). Vibrational frequencies, several low-lying electronic states, and trends in bond lengths and atomization energies are discussed. The predicted dissociation energies DeltaE(M3-->M2+M) are 49.4 kcal mol(-1)(Sc3), 64.3 kcal mol(-1)(Ti3), 60.7 kcal mol(-1)(V3), 11.5 kcal mol(-1)(Cr3), 32.4 kcal mol(-1)(Mn3), 61.5 kcal mol(-1)(Fe3), 78.0 kcal mol(-1)(Co3), 86.1 kcal mol(-1)(Ni3), 26.8 kcal mol(-1)(Cu3), and 4.5 kcal mol(-1)(Zn3).  相似文献   
35.
The aminolysis of esters is a basic organic reaction considered as a model for the interaction of carbonyl group with nucleophiles. In the present computational study the different possible mechanistic pathways of the reaction are reinvestigated by applying higher level electronic structure theory, examining the general base catalysis by the nucleophile, and a more comprehensive study the solvent effect. Both the ab initio QCISD/6-31(d,p) method and density functional theory at the B3LYP/6-31G(d) level were employed to calculate the reaction pathways for the simplest model aminolysis reaction between methylformate and ammonia. Solvent effects were assessed by the PCM method. The results show that in the case of noncatalyzed aminolysis the addition/elimination stepwise mechanism involving two transition states and the concerted mechanism have very similar activation energies. However, in the case of catalyzed aminolysis by a second ammonia molecule the stepwise mechanism has a distinctly lower activation energy. All transition states in the catalyzed aminolysis are 10-17 kcal/mol lower than those for the uncatalyzed process.  相似文献   
36.
Adiabatic electron affinities, optimized molecular geometries, and IR-active vibrational frequencies have been predicted for small cyclic hydrocarbon radicals C(n)H(2)(n)(-)(1) (n = 3-6) and their perfluoro counterparts C(n)F(2)(n)(-)(1) (n = 3-6). Total energies and optimized geometries of the radicals and corresponding anions have been obtained using carefully calibrated (Chem. Rev. 2002, 102, 231) density functional methods, namely, the B3LYP, BLYP, and BP86 functionals in conjunction with the DZP++ basis set. The predicted electron affinities show that only the cyclopropyl radical tends to bind electrons among the hydrocarbon radicals studied. The trend for the perfluorocarbon (PFC) radicals is quite different. The electron affinities increase with expanding ring size until n = 5 and then slightly decrease at n = 6. Predicted electron affinities of the hydrocarbon radicals using the B3LYP hybrid functional are 0.24 eV (C(3)H(5)/C(3)H(5)(-)), -0.19 eV (C(4)H(7)/C(4)H(7)(-)), -0.15 eV (C(5)H(9)/C(5)H(9)(-)), and -0.11 eV (C(6)H(11)/C(6)H(11)(-)). Analogous electron affinities of the perflurocarbon radicals are 2.81 eV (C(3)F(5)/C(3)F(5)(-)), 3.18 eV (C(4)F(7)/C(4)F(7)(-)), 3.34 eV (C(5)F(9)/C(5)F(9)(-)), and 3.21 eV (C(6)F(11)/C(6)F(11)(-)).  相似文献   
37.
Five different pure density functional theory (DFT) and hybrid Hartree-Fock/DFT methods have been used to search for the molecular structures, thermochemistry, and electron affinities of the bromine hydrogen fluorides HBrF(n)/HBrF(n)(-) (n = 2, 4). The basis sets used in this work are of double-zeta plus polarization quality in conjunction with s- and p-type diffuse functions, labeled as DZP++. Structures with Br-F and Br-H normal bonds, that is, HBrF(2)/HBrF(2)(-) with C(2v) or C(s) symmetry and HBrF(4)/HBrF(4)(-) with C(4v) or C(s) symmetry, are genuine minima. However, unlike the original BrF(3) and BrF(5) molecules, the global minima for HBrF(n)/HBrF(n)(-) (n = 2, 4) species are predicted to be complexes, some of which contain hydrogen bonds. The demise of the hypervalent structures is due to the availability of favorable dissociation products involving HF, which has a much larger dissociation energy than F(2). Similar reasoning suggests that PF(4)H, SF(3)H, SF(5)H, ClF(2)H, ClF(4)H, AsF(4)H, SeF(3)H, and SeF(5)H will all be hydrogen bond structures incorporating diatomic HF. The most reasonable theoretical values of the adiabatic electron affinities (EA(ad)) are 3.69 (HBrF(2)) and 4.38 eV (HBrF(4)) with the BHLYP method. These electron affinities are comparable to those of the analogous molecules: Br(2)F(n), ClBrF(n), and BrF(n)(+1) systems. The first F-atom dissociation energies for the neutral global minima are 60 (HBrF(2)) and 49 kcal/mol (HBrF(4)) with the B3LYP method. The first H-atom dissociation energies for the same systems are 109 (HBrF(2)) and 116 kcal/mol (HBrF(4)). The large Br-H bond energies are not sufficient to render the hypervalent structures energetically tenable. The dissociation energies for the complexes to their fragments are relatively small.  相似文献   
38.
The cross-polarization magic angle spinning 13C NMR spectra of Hg(SbF6)2 - 2 Arene (Arene = C6HMe5, 1,2,4,5-C6H2Me4, 1,2,3,4-C6H2Me4, or C6H6) have been measured. The spectra of the complexes of C6HMe5 and 1,2,4,5-C6H2Me4 are consistent with static η1-bonding of the mercury to the arene at an unsubstituted carbon atom, while the spectra of the 1,2,3,4-C6H2Me4 and C6H6 complexes show the arene to have time-averaged Cs or C2, and C6 symmetry respectively, at the temperature of measurement (300 K).The reduced temperature 13C NMR spectra of Hg(Arene)n2+ (n = 1 or 2; Arene = 1,3,5-C6H3R3 (R = Me, i-Pr, or t-Bu)) in SO2 solution are also reported and affirm that in these intramolecularly mobile species the mercury bonds in an η1-manner, with unsubstituted aryl carbon atoms being the strongly preferred point of mercury attachment. This site preference is further demonstrated by the solution 13C NMR spectra of Hg(Arene)n2+ (Arene = 1,2,3,4-C6H2-Me4, n = 1 or 2; Arene = 1,4-C6H4R2, R = Me or t-Bu, n = 1). The spectra of the 1,4-C6H4R2 complexes and Hg(p-C6H4-t-BuMe)2+ provide clear evidence for steric influence of the binding site.Like Hg(C6Me6)22+, but unlike most of the complexes of substituted benzenes which have been studied, Hg(1,3,5-C6H3-i-Pr3)22+ exchanges only slowly with excess free ligand.  相似文献   
39.
The optimized geometries, adiabatic electron affinities, and IR-active vibrational frequencies have been predicted for the long linear carbon chains HC(2n)H. The B3LYP density functional combined with the DZP basis set was used in this theoretical study. The computed physical properties are discussed. The predicted electron affinities form a remarkably regular sequence: 1.78 (HC(12)H), 2.08 (HC(14)H), 2.32 (HC(16)H), 2.53 (HC(18)H), 2.69 (HC(20)H), 2.83 (HC(22)H), and 2.95 eV (HC(24)H). The predicted structures display an alternating triple and very short single bond pattern, with the degree of bond alternation significantly less for the radical anions.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号